Movement and Alignment of Microtubules in Electric Fields and Electric-Dipole-Moment Estimates

The effects of both constant (up to 2 × 103 V/m) and high-frequency alternating fields (up to 2.1 × 105 V/m, 200 kHz to 2 MHz) on suspended microtubules are investigated. At pH 6.8 and 120 mM ionic strength, constant fields cause a motion of microtubules toward the anode. The electrophoretic mobilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electromagnetic biology and medicine 2005-01, Vol.24 (3), p.319-330
Hauptverfasser: Böhm, Konrad J., Mavromatos, Nikolaos E., Michette, Alan, Stracke, Roland, Unger, Eberhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of both constant (up to 2 × 103 V/m) and high-frequency alternating fields (up to 2.1 × 105 V/m, 200 kHz to 2 MHz) on suspended microtubules are investigated. At pH 6.8 and 120 mM ionic strength, constant fields cause a motion of microtubules toward the anode. The electrophoretic mobility amounts to 2.6 × 10−4 cm2/Vs, reflecting a negative net charge of approximately 0.2 elementary charges per tubulin dimer. The moving microtubules are randomly space oriented. Alternating high-frequency fields induce electric dipoles and align the microtubules parallel to the field direction. By determining the angular velocity of the turning microtubules, we estimate a dipole moment of roughly 34,000 Debye at 2.1 × 105 V/m and 2 MHz. By comparing the potential energy of the dipole in the applied field with the thermal energy of microtubules, we obtain a minimum value of 6,000 Debye as necessary for an efficient alignment.
ISSN:1536-8378
1536-8386
DOI:10.1080/15368370500380010