Movement and Alignment of Microtubules in Electric Fields and Electric-Dipole-Moment Estimates
The effects of both constant (up to 2 × 103 V/m) and high-frequency alternating fields (up to 2.1 × 105 V/m, 200 kHz to 2 MHz) on suspended microtubules are investigated. At pH 6.8 and 120 mM ionic strength, constant fields cause a motion of microtubules toward the anode. The electrophoretic mobilit...
Gespeichert in:
Veröffentlicht in: | Electromagnetic biology and medicine 2005-01, Vol.24 (3), p.319-330 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of both constant (up to 2 × 103 V/m) and high-frequency alternating fields (up to 2.1 × 105 V/m, 200 kHz to 2 MHz) on suspended microtubules are investigated. At pH 6.8 and 120 mM ionic strength, constant fields cause a motion of microtubules toward the anode. The electrophoretic mobility amounts to 2.6 × 10−4 cm2/Vs, reflecting a negative net charge of approximately 0.2 elementary charges per tubulin dimer. The moving microtubules are randomly space oriented. Alternating high-frequency fields induce electric dipoles and align the microtubules parallel to the field direction. By determining the angular velocity of the turning microtubules, we estimate a dipole moment of roughly 34,000 Debye at 2.1 × 105 V/m and 2 MHz. By comparing the potential energy of the dipole in the applied field with the thermal energy of microtubules, we obtain a minimum value of 6,000 Debye as necessary for an efficient alignment. |
---|---|
ISSN: | 1536-8378 1536-8386 |
DOI: | 10.1080/15368370500380010 |