Portfolio selection with higher moments

We propose a method for optimal portfolio selection using a Bayesian decision theoretic framework that addresses two major shortcomings of the traditional Markowitz approach: the ability to handle higher moments and parameter uncertainty. We employ the skew normal distribution which has many attract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative finance 2010-05, Vol.10 (5), p.469-485
Hauptverfasser: Harvey, Campbell R., Liechty, John C., Liechty, Merrill W., Müller, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a method for optimal portfolio selection using a Bayesian decision theoretic framework that addresses two major shortcomings of the traditional Markowitz approach: the ability to handle higher moments and parameter uncertainty. We employ the skew normal distribution which has many attractive features for modeling multivariate returns. Our results suggest that it is important to incorporate higher order moments in portfolio selection. Further, our comparison to other methods where parameter uncertainty is either ignored or accommodated in an ad hoc way, shows that our approach leads to higher expected utility than competing methods, such as the resampling methods that are common in the practice of finance.
ISSN:1469-7688
1469-7696
DOI:10.1080/14697681003756877