Monitoring pollution in Tunisian coasts: application of a classification scale based on biochemical markers

Abstract Over the past decade, molecular, biochemical and cellular markers have been extensively used in pollution monitoring of aquatic environments. Biochemical markers have been selected among early molecular events occurring in the toxicological mechanisms of main contaminants. This paper assess...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomarkers 2005, Vol.10 (2-3), p.105-116
Hauptverfasser: Banni, M., Jebali, J., Daubeze, M., Clerandau, C., Guerbej, H., Narbonne, J. F., Boussetta, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Over the past decade, molecular, biochemical and cellular markers have been extensively used in pollution monitoring of aquatic environments. Biochemical markers have been selected among early molecular events occurring in the toxicological mechanisms of main contaminants. This paper assesses the marine environment quality along the Tunisian coasts using a statistical approach. Clams (Ruditapes decussatus) were collected during the four seasons of 2003 on seven different sites from the Tunisian coasts. Oxidative stress was evaluated in gills using catalase activity (Cat), neutral lipids and malonedialdehyde accumulation. Glutathione S-transferase activity is related to the conjugation of organic compounds and was evaluated in both, gills and digestive glands. Acetylcholinesterase activity was evaluated as the biomarker of exposure to organophosphorous, carbamate pesticides and heavy metals. For each biomarker, a discriminatory factor was calculated and a response index allocated. For each site, a global response index was calculated as the sum of the response index of each biomarker. Discriminant analysis shows significant differences between sites and seasons compared with control sample. Faroua (site 1) and Menzel Jemile (site 2) seem to be the less polluted with respect to the other sites for all seasons. Gargour (site 6) shows the highest Multimarker Pollution Index during the four seasons, indicating higher contamination level.
ISSN:1354-750X
1366-5804
DOI:10.1080/13547500500107497