Effects of sample size and nonnormality on the estimation of mediated effects in latent variable models

A Monte Carlo approach was used to examine bias in the estimation of indirect effects and their associated standard errors. In the simulation design, (a) sample size, (b) the level of nonnormality characterizing the data, (c) the population values of the model parameters, and (d) the type of estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural equation modeling 1997-01, Vol.4 (2), p.87-107
Hauptverfasser: Finch, John F., West, Stephen G., MacKinnon, David P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Monte Carlo approach was used to examine bias in the estimation of indirect effects and their associated standard errors. In the simulation design, (a) sample size, (b) the level of nonnormality characterizing the data, (c) the population values of the model parameters, and (d) the type of estimator were systematically varied. Estimates of model parameters were generally unaffected by either nonnormality or small sample size. Under severely nonnormal conditions, normal theory maximum likelihood estimates of the standard error of the mediated effect exhibited less bias (approximately 10% to 20% too small) compared to the standard errors of the structural regression coefficients (20% to 45% too small). Asymptotically distribution free standard errors of both the mediated effect and the structural parameters were substantially affected by sample size, but not nonnormality. Robust standard errors consistently yielded the most accurate estimates of sampling variability.
ISSN:1070-5511
1532-8007
DOI:10.1080/10705519709540063