Weak solutions to the phase field system

We consider a new concept of weak solutions to the phase field equations with a small parameter ϵ characterizing the length of interaction. For the standard situation of a single free interface, this concept (in contrast to the common one) leads to the well-known Stefan-Gibbs-Thomson problem as ϵ →...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral transforms and special functions 1998-03, Vol.6 (1-4), p.27-35
Hauptverfasser: Danilov, V.G., Omel'Yanov, G.A., Radkevich, E.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a new concept of weak solutions to the phase field equations with a small parameter ϵ characterizing the length of interaction. For the standard situation of a single free interface, this concept (in contrast to the common one) leads to the well-known Stefan-Gibbs-Thomson problem as ϵ → 0. For the case of a large number M(ϵ) (M(ϵ) → ∞ as ϵ → 0) of free interfaces, which is related to the "wave-train" interpretation of a "mushy region", this concept allows us to obtain limiting problems as ϵ → 0.
ISSN:1065-2469
1476-8291
DOI:10.1080/10652469808819148