Possible Participation of pICln in the Regulation of Angiogenesis Through Alternative Splicing of Vascular Endothelial Growth Factor Receptor mRNAs
In this study, the authors applied a modified Antisense Display method to human vascular endothelial cells (ECs) in culture to isolate new angiostatic genes. Screening of a 10mer antisense oligodeoxyribonucleotide (oligo) repertoire identified a subpool that consistently stimulated EC growth. Subseq...
Gespeichert in:
Veröffentlicht in: | Endothelium (New York, N.Y.) N.Y.), 2004-01, Vol.11 (5-6), p.293-300 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the authors applied a modified Antisense Display method to human vascular endothelial cells (ECs) in culture to isolate new angiostatic genes. Screening of a 10mer antisense oligodeoxyribonucleotide (oligo) repertoire identified a subpool that consistently stimulated EC growth. Subsequent screening of oligos with increasing chain length led to the isolation of a unique growth-stimulatory 14mer, 5′-TTCCACATCATATT-3′. cDNA/EST data-base search and expression analyses in ECs indicated pICln as the corresponding gene. A longer unique antisense oligo against a different region of pICln mRNA was found to also enhance EC growth and tube formation and to decrease mRNAs for soluble Flt-1 and neuropilin-1 vascular endothelial growth factor (VEGF) receptors, the angiostatic factors that are generated by alternative RNA splicing. Conversely, pICln overexpression suppressed EC growth and increased the mRNAs for both soluble Flt-1 and soluble neuropilin-1. The present findings thus suggest that pICln plays a role in autocrine regulation of angiogenesis, probably through alternative splicing. |
---|---|
ISSN: | 1062-3329 1029-2373 |
DOI: | 10.1080/10623320490904250 |