THEORY OF A FLOATING RANDOM-WALK ALGORITHM FOR SOLVING THE STEADY-STATE HEAT EQUATION IN COMPLEX, MATERIALLY INHOMOGENEOUS RECTILINEAR DOMAINS

We present the theory and preliminary numerical results for a new random-walk algorithm algorithm solves the steady-state heat equation subject to Dirichlet boundary conditions. Our emphasis is the analysis of geometrically complex domains made up of piecewise-rectilinear boundaries and material int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical heat transfer. Part B, Fundamentals Fundamentals, 1994-10, Vol.26 (3), p.353-366
Hauptverfasser: Coz, Yannick L. Le, Iverson, Ralph B., Sham, T.-L., Tiersten, Harry F., Shephard, Mark S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the theory and preliminary numerical results for a new random-walk algorithm algorithm solves the steady-state heat equation subject to Dirichlet boundary conditions. Our emphasis is the analysis of geometrically complex domains made up of piecewise-rectilinear boundaries and material interfaces. This work is principally motivated by the semiconductor industry, specifically, their aggressive development of so-called multichip module (MCM) technology. We give a mathematical derivation of the surface Green's function for Laplace's equation over a square region. From it, we obtain an infinite multiple-integral series expansion yielding temperature at any space point in the actual heat-equation problem domain. A stochastic floating random-walk algorithm is then deduced from the integral series expansion. To determine the volumetric thermal distribution within the domain, we introduce a unique linear, bilinear, and trigonometric splining procedure. A numerical-verification study employing two-dimensional finite-difference benchmark solutions has confirmed the accuracy of our algorithm and splining procedure.
ISSN:1040-7790
1521-0626
DOI:10.1080/10407799408914934