Estimation of the binomial parameter n using a linex loss function
Suppose that X has a binomial distribution B(n,p), with known p and unknown n∈ {0,1,...}. We consider estimation of n when the loss function is Varian's asymmetric LINEX loss function , where δ is the estimation error and b> 0 and a ≠ 0 are the parameters of the loss function. This loss func...
Gespeichert in:
Veröffentlicht in: | Communications in statistics. Theory and methods 1992-01, Vol.21 (5), p.1427-1439 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose that X has a binomial distribution B(n,p), with known p and unknown n∈ {0,1,...}. We consider estimation of n when the loss function is Varian's asymmetric LINEX loss function
, where δ is the estimation error and b> 0 and a ≠ 0 are the parameters of the loss function. This loss function is useful when overestimation of n is more serious than its underestimation, or vice versa: The sign of the shape parameter a reflects the direction of the asymmetry and its magnitude reflects the degree of the asymmetry. Results concerning the admissibility of linear estimators ṋ=cX+d are presented, including the interesting result that the admissibility of the usual estimator ṋ=X/p depends on the sign of the shape parameter a, i.e. on whether underestimation of n is regarded as more, or less, serious than its overestimation : if a |
---|---|
ISSN: | 0361-0926 1532-415X |
DOI: | 10.1080/03610929208830856 |