Linear calibra and conditional inference

Approximate conditional inference is developed for the linear calibration problem. It is shown that this problem can be transformed so that the primary parameter is an angle, the nuisance parameter is a radial distance, and the density is rotationally symmetric. Were the nuisance parameter known, ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in statistics. Theory and methods 1987-01, Vol.16 (4), p.1037-1048
Hauptverfasser: Dobrigai, A., Fraser, D.A.S., Gebotys, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Approximate conditional inference is developed for the linear calibration problem. It is shown that this problem can be transformed so that the primary parameter is an angle, the nuisance parameter is a radial distance, and the density is rotationally symmetric. Were the nuisance parameter known, exact location confidence intervals would be available by location of structural arguments. A confidence distribution is used to average out the nuisance parameter yielding an approximate confidence interval that involves a precision indicator derived from the radial distance. Some difficulties with the ordinary solution are avoided by the conditional procedure.
ISSN:0361-0926
1532-415X
DOI:10.1080/03610928708829421