Existence of a Degenerate Singularity in the High Activation Energy Limit of a Reaction-Diffusion Equation

We consider the singular perturbation problem where , β is a Lipschitz continuous function such that β > 0 in (0, 1), β ≡ 0 outside (0, 1) and . We construct an example exhibiting a degenerate singularity as ε k  ↘ 0. More precisely, there is a sequence of solutions u ε k  → u as k → ∞, and there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in partial differential equations 2010-01, Vol.35 (1), p.185-199
Hauptverfasser: Weiss, Georg S., Zhang, Guanghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the singular perturbation problem where , β is a Lipschitz continuous function such that β > 0 in (0, 1), β ≡ 0 outside (0, 1) and . We construct an example exhibiting a degenerate singularity as ε k  ↘ 0. More precisely, there is a sequence of solutions u ε k  → u as k → ∞, and there exists x 0  ∈ ∂{u > 0} such that Known results suggest that this singularity must be unstable, which makes it hard to capture analytically and numerically. Our result answers a question raised by Jean-Michel Roquejoffre at the FBP'08 in Stockholm.
ISSN:0360-5302
1532-4133
DOI:10.1080/03605300903338322