Conformally Invariant Operators, Differential Forms, Cohomology and a Generalisation of Q-Curvature
On conformal manifolds of even dimension n ≥ 4 we construct a family of new conformally invariant differential complexes, each containing one coboundary operator of order greater than 1. Each bundle in each of these complexes appears either in the de Rham complex or in its dual (which is a different...
Gespeichert in:
Veröffentlicht in: | Communications in partial differential equations 2005-11, Vol.30 (11), p.1611-1669 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On conformal manifolds of even dimension n ≥ 4 we construct a family of new conformally invariant differential complexes, each containing one coboundary operator of order greater than 1. Each bundle in each of these complexes appears either in the de Rham complex or in its dual (which is a different complex in the non-orientable case). Each of the new complexes is elliptic in case the conformal structure has Riemannian signature. We also construct gauge companion operators which (for differential forms of order k ≤ n/2) complete the exterior derivative to a conformally invariant and (in the case of Riemannian signature) elliptically coercive system. These (operator, gauge) pairs are used to define finite dimensional conformally stable form subspaces which are are candidates for spaces of conformal harmonics. This generalizes the n/2-form and 0-form cases, in which the harmonics are given by conformally invariant systems. These constructions are based on a family of operators on closed forms which generalize in a natural way Branson's Q-curvature. We give a universal construction of these new operators and show that they yield new conformally invariant global pairings between differential form bundles. Finally we give a geometric construction of a family of conformally invariant differential operators between density-valued differential form bundles and develop their properties (including their ellipticity type in the case of definite conformal signature). The construction is based on the ambient metric of Fefferman and Graham, and its relationship to the tractor bundles for the Cartan normal conformal connection. For each form order, our derivation yields an operator of every even order in odd dimensions, and even order operators up to order n in even dimension n. In the case of unweighted (or true) forms as domain, these operators are the natural form analogues of the critical order conformal Laplacian of Graham et al., and are key ingredients in the new differential complexes mentioned above. |
---|---|
ISSN: | 0360-5302 1532-4133 |
DOI: | 10.1080/03605300500299943 |