Generalized matrix tree theorem for mixed graphs

In this article we provide a combinatorial description of an arbitrary minor of the Laplacian matrix (L) of a mixed graph (a graph with some oriented and some unoriented edges). This is a generalized Matrix Tree Theorem. We also characterize the non-singular substructures of a mixed graph. The sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear & multilinear algebra 1999-10, Vol.46 (4), p.299-312
Hauptverfasser: Bapat, Ravindra B., Grossman, Jerrold W., Kulkarni, Devadatta M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we provide a combinatorial description of an arbitrary minor of the Laplacian matrix (L) of a mixed graph (a graph with some oriented and some unoriented edges). This is a generalized Matrix Tree Theorem. We also characterize the non-singular substructures of a mixed graph. The sign attached to a nonsingular substructure is described in terms of labeling and the number of unoriented edges included in certain paths. Nonsingular substructures may be viewed as generalized matchings, because in the case of disjoint vertex sets corresponding to the rows and columns of a minor of L, our generalized Matrix Tree Theorem provides a signed count over matchings between those vertex sets. A mixed graph is called quasi bipartite if it does not contain a non singular cycle (a cycle containing an odd number of un-oriented edges). We give several characterizations of quasi-bipartite graphs.
ISSN:0308-1087
1563-5139
DOI:10.1080/03081089908818623