A mesoscale modelling study of nematic liquid crystals confined to ellipsoidal domains

Director configurations of nematic liquid crystalline molecules packed in ellipsoidal domains have been investigated using mesoscale modelling techniques. Interactions between the directors were described by the Lebwohl-Lasher potential. Four different ellipsoidal shapes (sphere, oblate spheroid, pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Liquid crystals 2000-05, Vol.27 (5), p.591-603
Hauptverfasser: Bharadwaj, Rishikesh K., Bunning, Timothy J., Farmer, B. L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Director configurations of nematic liquid crystalline molecules packed in ellipsoidal domains have been investigated using mesoscale modelling techniques. Interactions between the directors were described by the Lebwohl-Lasher potential. Four different ellipsoidal shapes (sphere, oblate spheroid, prolate spheroid, and ellipsoid) were studied under homogeneous and homeotropic surface anchoring conditions. The model has been characterized by computing thermodynamic and structural properties as a function of ellipsoidal shape (prolate and oblate) and size. The predicted director configuration in ellipsoids resulting from homeotropic surface anchoring is found to be very different from that in spherical domains. The bipolar configuration involving homogeneous surface anchoring is nearly identical in the four cases. The effect of an external electric field, applied at different orientations with respect to the major axis of the ellipsoid, has been probed as a function of the magnitude of the field and the ellipsoidal size and shape. The orientation of directors is most easily accomplished parallel and perpendicular to the major axis for the oblate and prolate spheroids, respectively, for homeotropic anchoring, and along the bipolar symmetry axis for homogeneous anchoring. In domains with homeotropic surface anchoring, the oblate spheroid and elongated ellipsoid are predicted to be the most efficient geometries for PDLC applications; for homogeneous anchoring conditions, the prolate spheroid and elongated ellipsoid are predicted to be the most efficient.
ISSN:0267-8292
1366-5855
DOI:10.1080/026782900202435