Modelling of unexpected shift in SPC

Optimal statistical process control (SPC) requires models of both in-control and out-of-control process states. Whereas a normal distribution is the generally accepted model for the in-control state, there is a doubt as to the existence of reliable models for out-of-control cases. Various process mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2005-06, Vol.32 (4), p.375-386
Hauptverfasser: Zeifman, Michael I., Ingman, Dov
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optimal statistical process control (SPC) requires models of both in-control and out-of-control process states. Whereas a normal distribution is the generally accepted model for the in-control state, there is a doubt as to the existence of reliable models for out-of-control cases. Various process models, available in the literature, for discrete manufacturing systems (parts industry) can be treated as bounded discrete-space Markov chains, completely characterized by the original in-control state and a transition matrix for shifts to an out-of-control state. The present work extends these models by using a continuous-state Markov chain, incorporating non-random corrective actions. These actions are to be realized according to the SPC technique and should substantially affect the model. The developed stochastic model yields a Laplace distribution of a process mean. An alternative approach, based on the Information theory, also results in a Laplace distribution. Real-data tests confirm the applicability of a Laplace distribution for the parts industry and show that the distribution parameter is mainly controlled by the SPC sample size.
ISSN:0266-4763
1360-0532
DOI:10.1080/02664760500079175