Asymptotically Minimax Nonparametric Regression in L2

Additive nonparametric regression with equidistant observation design is considered. The Pinsker-type minimax results are derived and the linear asymptotically minimax estimators are exhibited, based on approximation of the initial nonparametric model by a linear models of dimension which is increas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics (Berlin, DDR) DDR), 1996-01, Vol.28 (2), p.105-122
Hauptverfasser: Belitser, E. N., Levit, B. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Additive nonparametric regression with equidistant observation design is considered. The Pinsker-type minimax results are derived and the linear asymptotically minimax estimators are exhibited, based on approximation of the initial nonparametric model by a linear models of dimension which is increasing with the number of observations. The proof of optimality of these linear estimators within the class of all possible estimators is based on the rather elementary but very useful van Trees inequality.
ISSN:0233-1888
1029-4910
DOI:10.1080/02331889708802553