An algorithm for non-negative least error minimal norm solutions: Non-negative least error minimal norm solutions

In this paper we consider non-negative solutions of a system of m reai linear equations, Ax = b, in n unknowns which minimize the residual error when R m is equipped with a strictly convex norm. Out of these solutions we seek the one which is of the least norm for a strictly convex and smooth norm o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization 1996-01, Vol.17 (3-4), p.419-436
Hauptverfasser: Nikolopoulos, P.V., Sreedharan, V.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider non-negative solutions of a system of m reai linear equations, Ax = b, in n unknowns which minimize the residual error when R m is equipped with a strictly convex norm. Out of these solutions we seek the one which is of the least norm for a strictly convex and smooth norm on R n . An implementable iterative algorithm accomplishing this is given. The algorithm is globally convergent and it does not require that a non-negative least error solution be found first. As a special case, we test the algorithm for the l p -norms (1
ISSN:0163-0563
1532-2467
DOI:10.1080/01630569608816702