A variant of the fixed tangent method for spectral computations on integral operators

We propose a variant of the standard fixed tangent iteration to compute eigenvalues and corresponding invariant subspaces of a linear integral compact operator T defined on the space of complex valued continuous functions defined in [0, 1]. Convergence holds under very weak hypotheses on some discre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization 1995-01, Vol.16 (1-2), p.1-17
Hauptverfasser: Ahues, Mario, Largillier, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a variant of the standard fixed tangent iteration to compute eigenvalues and corresponding invariant subspaces of a linear integral compact operator T defined on the space of complex valued continuous functions defined in [0, 1]. Convergence holds under very weak hypotheses on some discretization T n of T which is used for computing both the starting point of iterations and an approximation to the derivative. Numerical experiments are performed with integral operators defined either by a continuous kernel or by a weakly singular kernel.
ISSN:0163-0563
1532-2467
DOI:10.1080/01630569508816604