A variant of the fixed tangent method for spectral computations on integral operators
We propose a variant of the standard fixed tangent iteration to compute eigenvalues and corresponding invariant subspaces of a linear integral compact operator T defined on the space of complex valued continuous functions defined in [0, 1]. Convergence holds under very weak hypotheses on some discre...
Gespeichert in:
Veröffentlicht in: | Numerical functional analysis and optimization 1995-01, Vol.16 (1-2), p.1-17 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a variant of the standard fixed tangent iteration to compute eigenvalues and corresponding invariant subspaces of a linear integral compact operator T defined on the space of complex valued continuous functions defined in [0, 1]. Convergence holds under very weak hypotheses on some discretization T
n
of T which is used for computing both the starting point of iterations and an approximation to the derivative. Numerical experiments are performed with integral operators defined either by a continuous kernel or by a weakly singular kernel. |
---|---|
ISSN: | 0163-0563 1532-2467 |
DOI: | 10.1080/01630569508816604 |