The cayley transform and the solution of an initial value problem for a first order differential equation with an unbounded operator coefficient in hilbert space

An initial value problem for a first order differential equation with an unbounded constant operator coefficient A in Hilbert space is considered. We give the definition of a σ-solution and using the Cayley transform we deduce an explicitformula for the solution in case the operator -A is self-adjoi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization 1994-01, Vol.15 (5-6), p.583-598
Hauptverfasser: Gavrilyuk, Ivan P., Makarov, Vladimir L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An initial value problem for a first order differential equation with an unbounded constant operator coefficient A in Hilbert space is considered. We give the definition of a σ-solution and using the Cayley transform we deduce an explicitformula for the solution in case the operator -A is self-adjoint and positiv definite. On the basis of this formula we propose a numerical algorithm for the approximate solution of the initial value problem and give an error estimate. It turns out that, contrary to the case of a bounded operator A, the rate of convergence is not exponential but only polynomial and depends on the smoothness of the initial data. It is proved that the approximate solution is a best approximation in some Hilbert subspace. An example concerning the homogeneous heat equation is given.
ISSN:0163-0563
1532-2467
DOI:10.1080/01630569408816582