Spectral Rayleigh-Schrödinger Series Revisited
Rayleigh-Schrödinger series for perturbation bounds of spectral elements is revisited. The convergence radius is estimated for bases of spectral subspaces. Applications to both Hessenberg and Hermitian matrices are developed, which are useful in spectral approximation with numerical methods.
Gespeichert in:
Veröffentlicht in: | Numerical functional analysis and optimization 2008-09, Vol.29 (7-8), p.735-749 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rayleigh-Schrödinger series for perturbation bounds of spectral elements is revisited. The convergence radius is estimated for bases of spectral subspaces. Applications to both Hessenberg and Hermitian matrices are developed, which are useful in spectral approximation with numerical methods. |
---|---|
ISSN: | 0163-0563 1532-2467 |
DOI: | 10.1080/01630560802279215 |