Spectral Rayleigh-Schrödinger Series Revisited

Rayleigh-Schrödinger series for perturbation bounds of spectral elements is revisited. The convergence radius is estimated for bases of spectral subspaces. Applications to both Hessenberg and Hermitian matrices are developed, which are useful in spectral approximation with numerical methods.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization 2008-09, Vol.29 (7-8), p.735-749
Hauptverfasser: Ahues, Mario, Largillier, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rayleigh-Schrödinger series for perturbation bounds of spectral elements is revisited. The convergence radius is estimated for bases of spectral subspaces. Applications to both Hessenberg and Hermitian matrices are developed, which are useful in spectral approximation with numerical methods.
ISSN:0163-0563
1532-2467
DOI:10.1080/01630560802279215