Extended Kalman filtering for fuzzy modelling and multi-sensor fusion

Extended Kalman Filtering (EKF) is proposed for: (i) the extraction of a fuzzy model from numerical data; and (ii) the localization of an autonomous vehicle. In the first case, the EKF algorithm is compared to the Gauss-Newton nonlinear least-squares method and is shown to be faster. An analysis of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical and computer modelling of dynamical systems 2007-06, Vol.13 (3), p.251-266
Hauptverfasser: Rigatos, G., Tzafestas, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extended Kalman Filtering (EKF) is proposed for: (i) the extraction of a fuzzy model from numerical data; and (ii) the localization of an autonomous vehicle. In the first case, the EKF algorithm is compared to the Gauss-Newton nonlinear least-squares method and is shown to be faster. An analysis of the EKF convergence is given. In the second case, the EKF algorithm estimates the state vector of the autonomous vehicle by fusing data coming from odometric sensors and sonars. Simulation tests show that the accuracy of the EKF-based vehicle localization is satisfactory.
ISSN:1387-3954
1744-5051
DOI:10.1080/01443610500212468