IGNITION DELAY OF DROPLET CLOUDS: RESULTS FROM GROUP COMBUSTION THEORY
The ignition and evaporation of spherical cloud of droplets in a hot quiescent atmosphere is examined numerically using transient group combustion analysis. Ignition delay times are calculated as a function of cloud radius, ambient temperature, drop size and droplet number density. The ignition temp...
Gespeichert in:
Veröffentlicht in: | Chemical engineering communications 1991-06, Vol.105 (1), p.201-219 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ignition and evaporation of spherical cloud of droplets in a hot quiescent atmosphere is examined numerically using transient group combustion analysis. Ignition delay times are calculated as a function of cloud radius, ambient temperature, drop size and droplet number density. The ignition temperature for a cloud of drops was found to be less than that obtained from a single drop. The results indicated an interaction between chemical and physical effects resulting in the possibility of an optimal interdrop spacing for ignition of a fuel with a high boiling point. The model results indicate that for interdrop spacing to radius ratio of less than 5, the ignition and evaporation of a cloud of drops is confined to a thin layer at the surface of the cloud. For drops spaced farther apart thermal penetration from the hot ambient is possible resulting in vaporization within the cloud. |
---|---|
ISSN: | 0098-6445 1563-5201 |
DOI: | 10.1080/00986449108911526 |