A new goodness-of-fit test for type-I extreme-value and 2-parameter weibull distributions with estimated parameters

On the basis of the Kolmogorov-Smirnov (K-S), Cramer-von Mises (C-M) and Anderson- Darling (A-D) statistics, a new statisticL n , is developed and applied for testing the goodness-of-fit of Type-I extreme-value and 2-parameter Weibull distributions with estimated parameters. Maximum likelihood estim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical computation and simulation 1999-08, Vol.64 (1), p.23-48
Hauptverfasser: Liao, Min, Shimokawa, Toshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On the basis of the Kolmogorov-Smirnov (K-S), Cramer-von Mises (C-M) and Anderson- Darling (A-D) statistics, a new statisticL n , is developed and applied for testing the goodness-of-fit of Type-I extreme-value and 2-parameter Weibull distributions with estimated parameters. Maximum likelihood estimators (MLEs) and graphical plotting techniques (GPTs) are used to estimate the population parameters from a complete sample. The critical values of the new statistic are calculated using Monte Carlo simulation, in which 1,000,000 sets of samples for each sample size of 3(1)20,25(5)50, and 60(10)100 are generated. Moreover, a power study is conducted to investigate the power of the new statistic for goodness-of-fit tests when the population parameters are estimated hy the MLEs and GPTs. Monte Carlo simulation provides the power results using 10,000 repetitions for each ample size of 5, 10, 25, and 40. The power of the new statistic is compared with those of the K-S, C-M, A-D, as well as other statistics. The power comparisons indicate that the new statistic coupled with the GPTs is the most powerful goodness-of-fit test among the competitors.
ISSN:0094-9655
1563-5163
DOI:10.1080/00949659908811965