Subalgebras of free leibniz algebras

Leibniz algebras are in some sense non-(anti)commutative analogs of Lie algebras. The variety of all Lie algebras has the Schreier property (i.e. any subalgebra of the free algebra is free). This is not the case in the variety of all Leibniz algebras. Nevertheless we prove that: 1) the variety of al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in algebra 1998-01, Vol.26 (2), p.435-446
Hauptverfasser: Mikhalev, Alexander A., Umirbaev, Ualbai U.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leibniz algebras are in some sense non-(anti)commutative analogs of Lie algebras. The variety of all Lie algebras has the Schreier property (i.e. any subalgebra of the free algebra is free). This is not the case in the variety of all Leibniz algebras. Nevertheless we prove that: 1) the variety of all Leibniz algebras has the property of differential separability for subalgebras; 2) the Jacobian conjecture is true for free Leibniz algebras; 3) the free Leibniz algebras are finitely separable (in particular, it follows that the occurrence problem for free Leibniz algebras is solvable).
ISSN:0092-7872
1532-4125
DOI:10.1080/00927879808826139