On S-duo rings

A unital left R-module R M is said to have property (S) if every surjective endomorphism of R M is an automorphism, the ring R is called left (right) S-ring if every left (right) R-module with property (S) is Noetherian, R is called S-ring if it is both a left and a right S-ring. In this note we sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in algebra 1992-01, Vol.20 (8), p.2183-2189
1. Verfasser: Sangharé, Mamadou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A unital left R-module R M is said to have property (S) if every surjective endomorphism of R M is an automorphism, the ring R is called left (right) S-ring if every left (right) R-module with property (S) is Noetherian, R is called S-ring if it is both a left and a right S-ring. In this note we show that a duo ring is a left S-ring if and only if it is left Artinian left principal ideal ring. To do this we shall construct on every non distributive Artinian local ring with radical square zero a non-finitely generated module with property (S). And we give an example of left duo left Artinian left principal ideal ring which is not a left S-ring, showing the necessity of the ring to be duo in the above result.
ISSN:0092-7872
1532-4125
DOI:10.1080/00927879208824455