Positivity and monotonicity properties of transport equations with spatially dependent cross sections
We investigate the transport equation with suitable boundary conditions through an equivalent integral equation. Assuming the incoming fluxes, the internal source term f(x,μ), the cross section c(x) and the parameter ξ to be nonnegative, we prove the existence of a unique dominant eigenvalue ξ=ξ 0 (...
Gespeichert in:
Veröffentlicht in: | Transp. Theory Stat. Phys.; (United States) 1982-01, Vol.11 (3-4), p.199-215 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the transport equation
with suitable boundary conditions through an equivalent integral equation. Assuming the incoming fluxes, the internal source term f(x,μ), the cross section c(x) and the parameter ξ to be nonnegative, we prove the existence of a unique dominant eigenvalue ξ=ξ
0
(τ) for which the homogeneous problem has a positive solution (critical case), the existence of a unique positive solution for ξ < ξ
0
(τ) (non-critical case), and the absence of positive solutions for ξ > ξ
0
(τ) (supercritical case). We show ξ
0
(τ) to decrease continuously from ∞ to some ξ
0
(∞)>0 whenever ξ increases from 0 to ∞ (monotonicity). The results are obtained by studying an operator that leaves invariant the cone of nonnegative functions in L
∞
(0,τ). |
---|---|
ISSN: | 0041-1450 1532-2424 |
DOI: | 10.1080/00411458208245741 |