Improving the efficiency of the configurational-bias Monte Carlo algorithm
Algorithms are presented to improve the efficiency for the generation of trial orientations and for the calculation of the Rosenbluth weight in a configurational-bias Monte Carlo (CBMC) simulation. These algorithms were tested for N p T and N V T simulations of n-octane, 3-methylheptane, and 3,4-dim...
Gespeichert in:
Veröffentlicht in: | Molecular physics 1998-07, Vol.94 (4), p.727-733 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Algorithms are presented to improve the efficiency for the generation of trial orientations and for the calculation of the Rosenbluth weight in a configurational-bias Monte Carlo (CBMC) simulation. These algorithms were tested for N p T and N V T simulations of n-octane, 3-methylheptane, and 3,4-dimethylhexane at different temperatures and densities using a preliminary version of the TraPPE united-atom representation for the CH
3
, CH
2
and CH groups. It was found that for a system of 144 molecules these algorithms speed up the calculation three times for n-octane and almost four times for 3,4-dimethylhexane, resulting in a decreased difference in simulation time between a branched molecule and a linear isomer. For larger systems the speedup is even greater. It is shown that the excluded volume of an atom is the dominant term for the selection of a trial orientation, which leads to an improved CBMC algorithm called dual cutoff configurational-bias Monte Carlo (DC-CBMC). |
---|---|
ISSN: | 0026-8976 1362-3028 |
DOI: | 10.1080/002689798167881 |