Non-markovian diffusion and Fokker-Planck equations for brownian oscillators
A generalized diffusion equation is derived from the Mori-Kubo generalized Langevin for a brownian oscillator subject to gaussian random but in general non-markovian noise. This equation involves a time-dependent diffusion function rather than a phenomenological diffusion constant. For long times th...
Gespeichert in:
Veröffentlicht in: | Molecular physics 1977-06, Vol.33 (6), p.1671-1681 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A generalized diffusion equation is derived from the Mori-Kubo generalized Langevin for a brownian oscillator subject to gaussian random but in general non-markovian noise. This equation involves a time-dependent diffusion function rather than a phenomenological diffusion constant. For long times the diffusion function approaches a constant for overdamped markovian oscillators; only in the limit of extreme overdamping is the phenomenological theory recovered.
A previously derived generalized phase space Fokker-Planck equation for the brownian oscillator is shown to have incorrect short-time behaviour. The difficulty is traced to a transient systematic component of the Mori random force which is non-vanishing for classical lattices at 0 K.
Fokker-Planck and diffusion equations for the brownian oscillator are derived from a generalized Langevin representation equivalent to, but distinct from, that of Mori and Kubo. The random force in this representation lacks the systematic transient component. The Fokker-Planck and diffusion equations obtained from this alternative Langevin representation are thus correct at all times. |
---|---|
ISSN: | 0026-8976 1362-3028 |
DOI: | 10.1080/00268977700101391 |