Non-markovian diffusion and Fokker-Planck equations for brownian oscillators

A generalized diffusion equation is derived from the Mori-Kubo generalized Langevin for a brownian oscillator subject to gaussian random but in general non-markovian noise. This equation involves a time-dependent diffusion function rather than a phenomenological diffusion constant. For long times th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular physics 1977-06, Vol.33 (6), p.1671-1681
Hauptverfasser: Adelman, S.A., Garrison, B.J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A generalized diffusion equation is derived from the Mori-Kubo generalized Langevin for a brownian oscillator subject to gaussian random but in general non-markovian noise. This equation involves a time-dependent diffusion function rather than a phenomenological diffusion constant. For long times the diffusion function approaches a constant for overdamped markovian oscillators; only in the limit of extreme overdamping is the phenomenological theory recovered. A previously derived generalized phase space Fokker-Planck equation for the brownian oscillator is shown to have incorrect short-time behaviour. The difficulty is traced to a transient systematic component of the Mori random force which is non-vanishing for classical lattices at 0 K. Fokker-Planck and diffusion equations for the brownian oscillator are derived from a generalized Langevin representation equivalent to, but distinct from, that of Mori and Kubo. The random force in this representation lacks the systematic transient component. The Fokker-Planck and diffusion equations obtained from this alternative Langevin representation are thus correct at all times.
ISSN:0026-8976
1362-3028
DOI:10.1080/00268977700101391