Time-domain approaches to multichannel optimal deconvolution

Using the modern time series analysis method, based on the autoregressive moving average (ARMA) innovation model and white noise estimators, two time-domain approaches to multichannel optimal deconvolution are presented. In the first approach, the multichannel optimal deconvolution estimators are gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of systems science 2000-06, Vol.31 (6), p.787-796
1. Verfasser: Deng, Zi-Li
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the modern time series analysis method, based on the autoregressive moving average (ARMA) innovation model and white noise estimators, two time-domain approaches to multichannel optimal deconvolution are presented. In the first approach, the multichannel optimal deconvolution estimators are given in the ARMA innovation filters form, where the solution of the Diophantine equations is required. Their global and local asymptotic stability is proved. In the second approach, the multichannel ARMA recursive Wiener deconvolution filters without the Diophantine equations are presented, which have asymptotic stability. The relationship between the ARMA innovation filters and ARMA Wiener deconvolution filters is discussed. Each approach can handle the deconvolution filtering, smoothing and prediction problems in a unified framework. An illustrative example and two simulation examples show their effectiveness.
ISSN:0020-7721
1464-5319
DOI:10.1080/00207720050030824