Production scheduling optimization algorithm for the hot rolling processes

The hot rolling production scheduling problem is an extremely difficult and time-consuming process, so it is quite difficult to achieve an optimal solution with traditional optimization methods owing to the high computational complexity. To ensure the feasibility of solutions and improve the efficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2008-04, Vol.46 (7), p.1955-1973
Hauptverfasser: Chen, A. l., Yang, G. K., Wu, Z. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hot rolling production scheduling problem is an extremely difficult and time-consuming process, so it is quite difficult to achieve an optimal solution with traditional optimization methods owing to the high computational complexity. To ensure the feasibility of solutions and improve the efficiency of the scheduling, this paper proposes a vehicle routing problem (VRP) to model the problem and develops an easily implemented hybrid approach (QPSO-SA) to solve the problem. In the hybrid approach, quantum particle swarm optimization (QPSO) combines local search and global search to search the optimal results and simulated annealing (SA) employs certain probability to avoid getting into a local optimum. The computational results from actual production data have shown that the proposed model and algorithm are feasible and effective for the hot rolling scheduling problem.
ISSN:0020-7543
1366-588X
DOI:10.1080/00207540600988048