DRUG EFFECTS ON CALCIUM HOMEOSTASIS IN MOUSE CA1 HIPPOCAMPAL NEURONS

Voltage-dependent Ca2+ channels (VDCC) are important in control of neuronal excitability, synaptic transmission, and many other cellular process. Even the slightest alteration in Ca2+ currents can have a considerable impact on the neuronal function. However, it is still unknown whether Ca2+ currents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of neuroscience 2003-10, Vol.113 (10), p.1317-1332
Hauptverfasser: ALSHUAIB, WALEED B., CHERIAN, SUSAN P., HASAN, MOHAMED Y., FAHIM, MOHAMED A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Voltage-dependent Ca2+ channels (VDCC) are important in control of neuronal excitability, synaptic transmission, and many other cellular process. Even the slightest alteration in Ca2+ currents can have a considerable impact on the neuronal function. However, it is still unknown whether Ca2+ currents are affected by neurotoxic drugs such as lead, cobalt, zinc, cadmium, thallium, lanthanum, and aluminum. We have characterized the effects of neurotoxic drugs on Ca2+ homeostasis in CA1 hippocampal C57BL mice. Fura 2-AM fluorescence photometry was used to measure intracellular Ca2+ concentration ([Ca2+]i) in the presence and absence of neurotoxic drugs (10 µM) in response to KCl application. The peak [Ca2+]i due to KCl application was reduced in the presence of lead (60%), cobalt (35%), zinc (62%), cadmium (71%), thallium (27%), and lanthanum (66%). By contrast, in the presence of aluminum the peak [Ca2+]i was either increased (46%) or it was not affected. These results indicate that neurotoxic drugs could block the entry of calcium into CA1 neurons via VDCC.­­
ISSN:0020-7454
1563-5279
1543-5245
DOI:10.1080/00207450390231455