Splitting methods for quadratic optimization in data analysis
Many problems arising in data analysis can be formulated as a large sparse strictly convex quadratic programming problems with equality and inequality linear constraints. In order to solve these problems, we propose an iterative scheme based on a splitting of the matrix of the objective function and...
Gespeichert in:
Veröffentlicht in: | International journal of computer mathematics 1997-01, Vol.63 (3-4), p.289-307 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many problems arising in data analysis can be formulated as a large sparse strictly convex quadratic programming problems with equality and inequality linear constraints. In order to solve these problems, we propose an iterative scheme based on a splitting of the matrix of the objective function and called splitting algorithm (SA). This algorithm transforms the original problem into a sequence of subproblems easier to solve, for which there exists a large number of efficient methods in literature. Each subproblem can be solved as a linear complementarity problem or as a constrained least distance problem.
We give conditions for SA convergence and we present an application on a large scale sparse problem arising in constrained bivariate interpolation. In this application we use a special version of SA called diagonalization algorithm (DA). An extensive experimentation on CRAY C90 permits to evaluate the DA performance |
---|---|
ISSN: | 0020-7160 1029-0265 |
DOI: | 10.1080/00207169708804568 |