The kernel of operators uncoupling systems of linear partial differential equations
The Laplace Transform exp[t(A-pD)]-exp[t(A 0 -pD)] where D is a diagonal matrix with diagonal elements d i , A is a constant n ×n matrix and A 0 , ij = A ij if d i =d j and A ij =0 otherwise, arises as the transform of the kernel of a Fredholm operator which maps the solutions of a system of linear...
Gespeichert in:
Veröffentlicht in: | Applicable analysis 1986-10, Vol.23 (1-2), p.29-41 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Laplace Transform exp[t(A-pD)]-exp[t(A
0
-pD)] where D is a diagonal matrix with diagonal elements d
i
, A is a constant n ×n matrix and A
0
,
ij
= A
ij
if d
i
=d
j
and A
ij
=0 otherwise, arises as the transform of the kernel of a Fredholm operator which maps the solutions of a system of linear partial differential equations which are uncoupled, onto those of a similar system but coupled by the matrix A. An inversion procedure is described and used to generate a series expression for the kernel. |
---|---|
ISSN: | 0003-6811 1563-504X |
DOI: | 10.1080/00036818608839629 |