The kernel of operators uncoupling systems of linear partial differential equations

The Laplace Transform exp[t(A-pD)]-exp[t(A 0 -pD)] where D is a diagonal matrix with diagonal elements d i , A is a constant n ×n matrix and A 0 , ij = A ij if d i =d j and A ij =0 otherwise, arises as the transform of the kernel of a Fredholm operator which maps the solutions of a system of linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable analysis 1986-10, Vol.23 (1-2), p.29-41
1. Verfasser: McNabb, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Laplace Transform exp[t(A-pD)]-exp[t(A 0 -pD)] where D is a diagonal matrix with diagonal elements d i , A is a constant n ×n matrix and A 0 , ij = A ij if d i =d j and A ij =0 otherwise, arises as the transform of the kernel of a Fredholm operator which maps the solutions of a system of linear partial differential equations which are uncoupled, onto those of a similar system but coupled by the matrix A. An inversion procedure is described and used to generate a series expression for the kernel.
ISSN:0003-6811
1563-504X
DOI:10.1080/00036818608839629