Development of Drug Delivery Systems from Vegetal Proteins: Legumin Nanoparticles

Abstract Legumin (storage protein from Pisum sativum L.) nanoparticles of about 250 nm were prepared by means of a pH-coacervation method and chemical cross-linking with glutaraldehyde. This preparative method enabled to avoid the use of organic solvents but only yielded about 27% of protein added a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug development and industrial pharmacy 1996, Vol.22 (8), p.841-846
Hauptverfasser: Mirshahi, T., Irache, J. M., Gueguen, J., Orecchioni, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Legumin (storage protein from Pisum sativum L.) nanoparticles of about 250 nm were prepared by means of a pH-coacervation method and chemical cross-linking with glutaraldehyde. This preparative method enabled to avoid the use of organic solvents but only yielded about 27% of protein added as nanoparticles. No significant differences in size, percentage yield, and surface charge were obtained between legumin nanoparticles cross-linked with different glutaraldehyde concentrations. Legumin nanoparticles were quite stable in phosphate-buffered saline (PBS). They follow a zero-order degradation, and by increasing glutaraldehyde concentration, a longer half-life (t50) was obtained. The amount of methylene blue (MB), used as a model of hydrophilic drug, loaded was about 6.2% of the initial dye. Its release from the nanoparticles consisted of a rapid initial phase followed by a slower second period. The rates in this second phase were inversely related to the degree of cross-linking.
ISSN:0363-9045
1520-5762
DOI:10.3109/03639049609065914