Preparation and evaluation of paclitaxel-loaded nanoparticle incorporated with galactose-carrying polymer for hepatocyte targeted delivery

Objective: Paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles incorporated with galactose-carrying polymer poly(vinyl benzyllactonamide) (PVLA) were prepared to facilitate the hepatocyte cell targeted delivery of paclitaxel via ligand-receptor mediated endocytosis. The factors impa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug development and industrial pharmacy 2012-09, Vol.38 (9), p.1039-1046
Hauptverfasser: Wang, Yujie, Jiang, Guoqiang, Qiu, Tingting, Ding, Fuxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective: Paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles incorporated with galactose-carrying polymer poly(vinyl benzyllactonamide) (PVLA) were prepared to facilitate the hepatocyte cell targeted delivery of paclitaxel via ligand-receptor mediated endocytosis. The factors impacting nanoparticle properties, drug release and cellular uptake efficiency were evaluated in vitro. Method: Paclitaxel-loaded nanoparticles incorporated with PVLA were prepared by emulsion solvent evaporation method with polyvinyl alcohol (PVA) as co-emulsifier. The presence of PVLA on the particle surface was investigated through the change of ζ potential and surface hydrophobicity. Cellular uptake and cytotoxic activity, involving factors concerned with them, were evaluated by HepG2 cells in vitro. Results: The presence of PVLA led to the increase of ζ potential, reduction of the particle surface hydrophobicity, slight promotion of paclitaxel encapsulation efficiency and more homogeneous particle size, but excessive PVLA accelerated the burst release. With enhanced attachment and cellular uptake efficiency, the PVLA incorporated nanoparticles exhibited significant cytotoxicity to HepG2 cells, and particles with higher PVLA-to-PLGA ratio, although had larger size and almost the same cellular uptake efficiency, performed much higher cytotoxic activity due to the larger drug capacity and faster release rate.
ISSN:0363-9045
1520-5762
DOI:10.3109/03639045.2011.637052