IPS-Empress II inlay-retained fixed partial denture reinforced with zirconia bar: Three-dimensional finite element and in-vitro studies
Abstract Objective. This study evaluated von Mises stress distribution, flexural strength and interface micrographs of IPS-Empress II (IPS) inlay-retained fixed partial dentures (IRFPD) reinforced with Zirconia bars (Zb). Materials and methods: In the Finite element analysis, six three-dimensional m...
Gespeichert in:
Veröffentlicht in: | Acta odontologica Scandinavica 2012-12, Vol.70 (6), p.569-576 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Objective.
This study evaluated von Mises stress distribution, flexural strength and interface micrographs of IPS-Empress II (IPS) inlay-retained fixed partial dentures (IRFPD) reinforced with Zirconia bars (Zb).
Materials and methods:
In the Finite element analysis, six three-dimensional models of IRFPD were designed using Solid Works 2006. Five models were reinforced with different Zb and a model without Zb was considered as a control. The bridges were loaded by 200 and 500 N forces at the middle of the pontic on the occlusal surface. Subsequently, von Mises stress and displacement of the models were evaluated along a defined path. In the experimental part, 21 bar shape specimens were fabricated from lithium disilicate and zirconia ceramic in three different designs. The zirconia-IPS interfaces and the fractured surfaces of flexural test were observed using SEM.
Results.
In the connector area, von Mises stress and displacement of the models with Zb under a load of 500 N were decreased compared to the model without the Zb; however, this difference was not considerable at a load of 200 N. In the mesial connector, Von Mises stress and displacement was decreased from 12.5 Mpa for the control model tested at 500 N to 7.0 Mpa for the model with Zb and from 0.0050-0.0041 mm, respectively. SEM analyses showed that, before fracture, interfacial gaps were not observed along the interfaces, but initiated cracks propagated along the interfaces after flexural loading.
Conclusion:
IPS IRFPD reinforced by Zb can tolerate higher stresses while still functioning effectively and the interfaces may have desirable adaption. |
---|---|
ISSN: | 0001-6357 1502-3850 |
DOI: | 10.3109/00016357.2011.640283 |