Polypeptide from Chlamys farreri inhibits UVB-induced HaCaT cells apoptosis via inhibition CD95 pathway and reactive oxygen species
Polypeptide from Chlamys farreri (PCF) is a novel marine active product isolated from gonochoric Chinese scallop Chlamys farreri which has recently been found to be an effective antioxidant. In this study, we assessed the effect of PCF on UVB-induced intracellular signalling of apoptosis in HaCaT ce...
Gespeichert in:
Veröffentlicht in: | Free radical research 2007-11, Vol.41 (11), p.1224-1232 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polypeptide from Chlamys farreri (PCF) is a novel marine active product isolated from gonochoric Chinese scallop Chlamys farreri which has recently been found to be an effective antioxidant. In this study, we assessed the effect of PCF on UVB-induced intracellular signalling of apoptosis in HaCaT cells. Pre-treatment with PCF significantly inhibited UVB-induced apoptosis in HaCaT cells. PCF strongly reduced the intracellular reactive oxygen species (ROS) level followed by inhibiting the release of cytochrome c. The expression of CD95 and Fas-associating protein with death domain (FADD) was eliminated in a dose-dependent manner by PCF pre-treatment in UVB-irradiated HaCaT cells, followed by inhibition of cleavage of procaspase-8, whose activation induced cell apoptosis. Furthermore, pre-treatment with the ROS scavenger N-acetylcysteine (NAC) and the caspase-8 inhibitor z-IETD-fmk was found to effectively prevent UVB-induced apoptosis, suggesting that UVB-induced HaCaT cell apoptosis was partially due to generation of ROS and activation of the caspase-8 pathway. Consequently, the protective effect of PCF against UVB irradiation in HaCaT cells is exerted by suppression of generation of ROS followed by inhibition of cytochrome c release and inactivation of Fas-FADD-caspase-8 pathway, resulting in blockage of UVB-induced apoptosis. |
---|---|
ISSN: | 1071-5762 1029-2470 |
DOI: | 10.1080/10715760701636858 |