The Interaction Between Radiation and Complexes of Cis-Pt(II) and Rh(II): Studies at the Molecular and Cellular Level

Summary A range of Rh(II) carboxylates and cis-Pt(II) complexes have been examined for their ability to increase the radiation sensitivity of aerobic and hypoxic V79 cells in vitro. The transition metal complexes sensitize in both air and nitrogen, with the greater effect generally occurring in nitr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation biology 1985-01, Vol.48 (4), p.513-524
Hauptverfasser: Chibber, R., Stratford, I.J., O'Neill, P., Sheldon, P.W., Ahmed, I., Lee, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary A range of Rh(II) carboxylates and cis-Pt(II) complexes have been examined for their ability to increase the radiation sensitivity of aerobic and hypoxic V79 cells in vitro. The transition metal complexes sensitize in both air and nitrogen, with the greater effect generally occurring in nitrogen. The cis-Pt(II) complexes only show small levels of sensitization with dose modification factors (DMFs) of no more than 1·2. In contrast, the Rh(II) complexes can give DMFs of 2·0. Radiation chemical experiments show the transition metal complexes to have substantially lower redox potentials than metronidazole and, in addition, neither type of complex undergoes electron transfer reaction or adduct formation on interaction with radicals derived from DNA bases. Thus, the inorganic complexes do not operate by mechanisms similar to those occurring with electron affinic or stable free radical sensitizers. The increase in radiation sensitivity for cells treated with the Rh(II) carboxylates, but not the cis-Pt(II) complexes, is attributed to the ability of the Rh compounds to deplete intracellular thiols. Further, the efficiency of sensitization by the Rh(II) complexes and their ability to interact with cellular thiols depends upon the nature of the carboxylate ligand and follows the order butyrate > propionate > acetate > methoxyacetate. The differences between the carboxylates may be due to differences in drug uptake. A combination of the Rh(II) complexes with misonidazole given to hypoxic cells irradiated in vitro gives an additive response. However, it was not possible to demonstrate a similar effect in tumours in mice given the combination of Rh(II) methoxyacetate and the misonidazole analogue RSU 1070.
ISSN:0955-3002
0020-7616
1362-3095
DOI:10.1080/09553008514551581