A Natural Language Processing Model for Automated Organization and Analysis of Intangible Cultural Heritage
This paper investigates text similarity methods in the field of NLP, improves upon the WMD, and develops the SWC-WMD distance, forming the basis for a clustering method for long ICH texts. Clustering experiments on the constructed ICH long text dataset using WMD, SWC-WMD, and TF-IDF-WMD distances we...
Gespeichert in:
Veröffentlicht in: | Journal of organizational and end user computing 2024-01, Vol.36 (1), p.1-27 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates text similarity methods in the field of NLP, improves upon the WMD, and develops the SWC-WMD distance, forming the basis for a clustering method for long ICH texts. Clustering experiments on the constructed ICH long text dataset using WMD, SWC-WMD, and TF-IDF-WMD distances were conducted. The impact of the number of feature words on clustering results and the effect of different distances on clustering outcomes were assessed based on accuracy and F1 values from the evaluation criteria. The final results show that the SWC-WMD distance improves the accuracy and F1 values of the ICH long text clustering results compared to the other two distances, thereby proving the effectiveness of the methods proposed in this paper. |
---|---|
ISSN: | 1546-2234 1546-5012 1546-5012 |
DOI: | 10.4018/JOEUC.349736 |