A comparative investigation of low work-function metal implantation in the oxide region for improving electrostatic characteristics of charge plasma TFET
Abruptness at tunnelling junction is a vital issue with doped tunnel field-effect transistor (TFET) to achieve improved electrostatic characteristics. This task is more problematic for charge plasma TFET (CP-TFET) because of large tunnelling barrier at the channel/source interface. In this regard, a...
Gespeichert in:
Veröffentlicht in: | Micro & nano letters 2019-02, Vol.14 (2), p.123-128 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abruptness at tunnelling junction is a vital issue with doped tunnel field-effect transistor (TFET) to achieve improved electrostatic characteristics. This task is more problematic for charge plasma TFET (CP-TFET) because of large tunnelling barrier at the channel/source interface. In this regard, an effective approach has already been employed through implantation of a horizontal metallic splint (HMS) inside the dielectric region near channel/source joint for improved electrical behaviour of CP-TFET. However, placement of a vertical metal splint (VMS) provides contact for HMS and gate electrode, which gives magnificent analogue/DC characteristics for newer structure. Combination of HMS and VMS (i.e. double metal splint (DMS)) increases electron density at channel/source junction for improved electron tunnelling rate compared with only HMS structure. In this regard, a complete comparative analysis of DMS CP TFET (DMS-CP-TFET) is performed between CP-TFET and HMS-CP-TFET. Furthermore, consequence of length and work-function variation of DMS and HMS on DC/RF parameters is investigated in device optimisation part of this work. |
---|---|
ISSN: | 1750-0443 1750-0443 |
DOI: | 10.1049/mnl.2018.5390 |