Encapsulation of supported g-C3N4/Au with metal–organic frameworks for enhanced stability towards photocatalytic hydrogen evolution
The supported graphitic-carbon nitride (g-C3N4)/Au composite has attracted considerable attention as an alternative visible-light photocatalyst for hydrogen evolution reactions. However, the short-term photocatalytic durability greatly limits their practical application. In this work, porous [Zn(BDC...
Gespeichert in:
Veröffentlicht in: | Micro & nano letters 2018-09, Vol.13 (9), p.1321-1324 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The supported graphitic-carbon nitride (g-C3N4)/Au composite has attracted considerable attention as an alternative visible-light photocatalyst for hydrogen evolution reactions. However, the short-term photocatalytic durability greatly limits their practical application. In this work, porous [Zn(BDC)(H2O)2]n, which is a typical two-dimensional metal–organic frameworks (MOFs), was used as the protecting material to encapsulate g-C3N4/Au. The obtained g-C3N4/Au@[Zn(BDC)(H2O)2]n catalyst was composed of lamellar MOFs shells and g-C3N4/Au cores. The catalysts exhibited an excellent catalytic activity and particularly superior stability as compared to the bare g-C3N4/Au. The encapsulation method by using MOFs as the protective shell provides an alternative strategy for designing photocatalysts with high catalytic performance. |
---|---|
ISSN: | 1750-0443 1750-0443 |
DOI: | 10.1049/mnl.2018.0206 |