Reliability evaluation and thermal design of medium-voltage converter for underwater long-distance high-voltage direct current transmission system
Underwater long-distance high-voltage direct current transmission system can provide long-term, reliable, and sustainable energy for ocean observatories system which has higher reliability requirement than onshore or conventional underwater equipment. As the main network point for high-voltage direc...
Gespeichert in:
Veröffentlicht in: | Journal of engineering (Stevenage, England) England), 2019-03, Vol.2019 (16), p.2239-2243 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Underwater long-distance high-voltage direct current transmission system can provide long-term, reliable, and sustainable energy for ocean observatories system which has higher reliability requirement than onshore or conventional underwater equipment. As the main network point for high-voltage direct current transmission system, medium-voltage converter of the primary node is at the top layer of power supply chain and its reliability will directly affect the reliability of high-voltage direct current transmission system. Based on a 2.5 kW medium-voltage converter, this study proposes a method to evaluate the reliability of medium-voltage converter with accuracy using the lifetime model of switch by analysis of component junction temperature providing theoretical foundation and technical guidance for medium-voltage converter design. Owing to the high power density of medium-voltage converter, the heat dissipation space is restricted to pressure vessel. This study proposes a thermal design method to ensure normal operation condition within appropriate temperature for medium-voltage converter and verified using ANSYS finite element analysis software. |
---|---|
ISSN: | 2051-3305 2051-3305 |
DOI: | 10.1049/joe.2018.8809 |