Delay constraint energy-efficient routing based on Lagrange relaxation in wireless sensor networks
Most of researches on wireless sensor network (WSN) are focused on how to reduce energy consumption to increase the network lifetime. There are few researches solving the problem of energy optimization ensuring delay constraint. Whereas, the delay is important factor for applications that require de...
Gespeichert in:
Veröffentlicht in: | IET wireless sensor systems 2017-10, Vol.7 (5), p.138-145 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most of researches on wireless sensor network (WSN) are focused on how to reduce energy consumption to increase the network lifetime. There are few researches solving the problem of energy optimization ensuring delay constraint. Whereas, the delay is important factor for applications that require delay-sensitive data. Several works have been published to balance the energy consumption and delay. They achieved many different results but each proposal has certain limitations. Some proposals have high computational and messaging complexity. Some others have not found the optimal solution. In this study, we investigate in finding solution to improve the energy efficiency of sensor nodes satisfying end-to-end delay to transmit data from sensor nodes to sink in multi-hop WSNs. Based on Lagrange relaxation method, we propose an aggregate cost function between energy consumption and delay as well as an efficient method to find the optimal multiplier for that objective function. We provide two algorithms to find paths with least energy consumption while maintaining end-to-end delay requirement from any sensor node to sink. Besides analyzing the complexity and convergence of the algorithm, the simulation results also show that the proposed algorithm achieved good balance between energy consumption and delay compared with the previous proposals. |
---|---|
ISSN: | 2043-6386 2043-6394 2043-6394 |
DOI: | 10.1049/iet-wss.2017.0038 |