Real-time fault analysis of transmission lines using wavelet multi-resolution analysis based frequency-domain approach

In a power system, transmission lines are prone to faults of different nature, which challenge the system stability and reliability. Thus system performance analysis under such fault conditions has drawn attention of researchers. Particularly, the advent of fast and efficient data acquisition using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET science, measurement & technology measurement & technology, 2016-10, Vol.10 (7), p.693-703
Hauptverfasser: Ananthan, Sundaravaradan Navalpakkam, Padmanabhan, Rajaraman, Meyur, Rounak, Mallikarjuna, Balimidi, Reddy, Maddikara Jaya Bharata, Mohanta, Dusmanta Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a power system, transmission lines are prone to faults of different nature, which challenge the system stability and reliability. Thus system performance analysis under such fault conditions has drawn attention of researchers. Particularly, the advent of fast and efficient data acquisition using higher sampling rates combined with high speed digital signal processors has paved the way for efficient digital real-time simulations. Though sustained efforts have been made by different researchers to develop some good real-time digital simulators, this study is an attempt to implement a laboratory prototype model of a 20 V, 200 km transmission line, representing a 400 kV extra-high voltage transmission line, so as to improve the real time performance. In addition, efficient National Instruments based data acquisition system in conjunction with LabVIEW has been incorporated to acquire the best possible representative data with commensurate characterisation and transmission with fidelity. The unique contributions of this real-time fault analysis laboratory hybrid model are accurate fault detection and classification using a frequency-domain approach having immunity to fault impedance and fault inception angle, which affect the time-domain analyses severely. It is also equipped with visual displays so that even non-experts can use it for planning and decision-making purposes.
ISSN:1751-8822
1751-8830
1751-8830
DOI:10.1049/iet-smt.2016.0038