Compact convolutional autoencoder for SAR target recognition

Learning discriminative features is difficult for deep learning-based target recognition in synthetic aperture radar (SAR) images with small training samples. To achieve a better feature learning, this study proposes a new deep network, a compact convolutional autoencoder (CCAE) for SAR target recog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET radar, sonar & navigation sonar & navigation, 2020-07, Vol.14 (7), p.967-972
Hauptverfasser: Guo, Jun, Wang, Ling, Zhu, Daiyin, Hu, Changyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Learning discriminative features is difficult for deep learning-based target recognition in synthetic aperture radar (SAR) images with small training samples. To achieve a better feature learning, this study proposes a new deep network, a compact convolutional autoencoder (CCAE) for SAR target recognition. CCAE minimises the reconstruction loss and the distance between intra-class samples simultaneously by imposing compactness constraint on the encoder, which results in a more discriminative feature representation. Furthermore, the pretrained CCAE encoder can be used to initialise the corresponding parameters of a convolutional neural network to facilitate the training of the end-to-end model. Experimental results using the moving and stationary target acquisition and recognition dataset show that the proposed method outperforms the existing deep learning-based methods in the case of small training samples.
ISSN:1751-8784
1751-8792
1751-8792
DOI:10.1049/iet-rsn.2019.0447