Compact convolutional autoencoder for SAR target recognition
Learning discriminative features is difficult for deep learning-based target recognition in synthetic aperture radar (SAR) images with small training samples. To achieve a better feature learning, this study proposes a new deep network, a compact convolutional autoencoder (CCAE) for SAR target recog...
Gespeichert in:
Veröffentlicht in: | IET radar, sonar & navigation sonar & navigation, 2020-07, Vol.14 (7), p.967-972 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Learning discriminative features is difficult for deep learning-based target recognition in synthetic aperture radar (SAR) images with small training samples. To achieve a better feature learning, this study proposes a new deep network, a compact convolutional autoencoder (CCAE) for SAR target recognition. CCAE minimises the reconstruction loss and the distance between intra-class samples simultaneously by imposing compactness constraint on the encoder, which results in a more discriminative feature representation. Furthermore, the pretrained CCAE encoder can be used to initialise the corresponding parameters of a convolutional neural network to facilitate the training of the end-to-end model. Experimental results using the moving and stationary target acquisition and recognition dataset show that the proposed method outperforms the existing deep learning-based methods in the case of small training samples. |
---|---|
ISSN: | 1751-8784 1751-8792 1751-8792 |
DOI: | 10.1049/iet-rsn.2019.0447 |