Virtual synchronous generator control strategy incorporating improved governor control and coupling compensation for AC microgrid
Virtual synchronous generator (VSG) control strategy has been widely used in the AC microgrid in recent years. However, the VSG control strategy is lack of the decoupling ability, and its governor control is also lack of the inertia block and speed controller block, resulting in poor dynamic perform...
Gespeichert in:
Veröffentlicht in: | IET power electronics 2019-05, Vol.12 (6), p.1455-1461 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Virtual synchronous generator (VSG) control strategy has been widely used in the AC microgrid in recent years. However, the VSG control strategy is lack of the decoupling ability, and its governor control is also lack of the inertia block and speed controller block, resulting in poor dynamic performance, steady-state performance, and low accuracy of the power sharing of the AC microgrid. In this study, a novel VSG control strategy incorporating improved governor control and coupling compensation is proposed to improve the performance of the AC microgrid. Its improved governor control comprises the speed controller and inertia, which can enhance the inertia of the angular frequency and decrease the difference of the governor control between the novel VSG control strategy and diesel generator. Its coupling compensation comprises the angular frequency deviation compensation and voltage deviation compensation, which can reduce the influence of the uncontrollable coupling on the power regulation and increase the degree of freedom of the power regulation. Experimental results validate the effectiveness of the proposed VSG control strategy. |
---|---|
ISSN: | 1755-4535 1755-4543 1755-4543 |
DOI: | 10.1049/iet-pel.2018.6167 |