Antenna pattern in three-dimensional modelling of the arrival angle in simulation studies of wireless channels

The statistical properties of the received signal are significantly dependent on the direction of arrival at the receiving antenna. Therefore, knowledge of the arrival angles is useful in simulation studies of wireless channels. This study presents a method for determining the arrival angles and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET microwaves, antennas & propagation antennas & propagation, 2017-05, Vol.11 (6), p.898-906
Hauptverfasser: Ziółkowski, Cezary, Kelner, Jan M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The statistical properties of the received signal are significantly dependent on the direction of arrival at the receiving antenna. Therefore, knowledge of the arrival angles is useful in simulation studies of wireless channels. This study presents a method for determining the arrival angles and their intensity in the azimuth and elevation planes. Besides, the impact of the propagation environment and radiation pattern of the transmitting antenna on the scattering intensity of the arrival angles is shown. This significantly distinguishes the proposed technique from the methods for determining signal direction that have been previously described in the literature. The procedure is based on a geometric description of the scattering areas, which are a set of half-ellipsoids. Their number and size result from the parameters of the power delay spectrum or profile for modelled propagation environment. Simulation studies offer the possibility of adapting the statistical properties of the arrival angles to the type of propagation environment examined. The inclusion of the propagation phenomena in the azimuth and elevation planes provides a better representation of the empirical results compared with two-dimensional modelling. This fact is shown by a comparison of statistical properties between the simulated directions and the measurement results for selected types of propagation environments.
ISSN:1751-8725
1751-8733
1751-8733
DOI:10.1049/iet-map.2016.0591