Target recognition for coastal surveillance based on radar images and generalised Bayesian inference

For coastal surveillance, this study proposes a novel approach to identify moving vessels from radar images with the use of a generalised Bayesian inference technique, namely the evidential reasoning (ER) rule. First of all, the likelihood information about radar blips is obtained in terms of the ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET intelligent transport systems 2018-03, Vol.12 (2), p.103-112
Hauptverfasser: Ma, Feng, Chen, Yu-wang, Yan, Xin-ping, Chu, Xiu-min, Wang, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For coastal surveillance, this study proposes a novel approach to identify moving vessels from radar images with the use of a generalised Bayesian inference technique, namely the evidential reasoning (ER) rule. First of all, the likelihood information about radar blips is obtained in terms of the velocity, direction, and shape attributes of the verified samples. Then, it is transformed to be multiple pieces of evidence, which are formulated as generalised belief distributions representing the probabilistic relationships between the blip's states of authenticity and the values of its attributes. Subsequently, the ER rule is used to combine these pieces of evidence, taking into account their corresponding reliabilities and weights. Furthermore, based on different objectives and verified samples, weight coefficients can be trained with a non-linear optimisation model. Finally, two field tests of identifying moving vessels from radar images have been conducted to validate the effectiveness and flexibility of the proposed approach.
ISSN:1751-956X
1751-9578
1751-9578
DOI:10.1049/iet-its.2017.0042