Post-disturbance transient stability assessment of power systems by a self-adaptive intelligent system

Intelligent system (IS) using synchronous phasor measurements for transient stability assessment (TSA) has received continuous interests recently. For post-disturbance TSA, one pivotal concern is the response time, which was reported in the literature as a fixed value ranging from 4 cycles to 3 s af...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET generation, transmission & distribution transmission & distribution, 2015-02, Vol.9 (3), p.296-305
Hauptverfasser: Zhang, Rui, Xu, Yan, Dong, Zhao Yang, Wong, Kit Po
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intelligent system (IS) using synchronous phasor measurements for transient stability assessment (TSA) has received continuous interests recently. For post-disturbance TSA, one pivotal concern is the response time, which was reported in the literature as a fixed value ranging from 4 cycles to 3 s after fault clearance. Since transient instability can develop very fast, there is a pressing need for faster response speed. This paper develops a novel IS to balance the response speed and accuracy requirements. A set of classifiers are sequentially organised, each is an ensemble of extreme learning machines (ELMs), whose inputs are post-disturbance generator voltage trajectories and outputs are the classification on the stable/unstable status of the post-disturbance system and an evaluation of the credibility of the classification. A self-adaptive TSA decision-making mechanism is designed to progressively adjust the response time, such that the IS can do the classification faster, thereby allowing more time for emergency controls. The ELM ensemble classifiers can also be updated by on-line pre-disturbance TSA results due to its very fast learning speed. Case studies on the New England system and IEEE 50-machine system have validated the high efficiency and accuracy of the IS.
ISSN:1751-8687
1751-8695
1751-8695
DOI:10.1049/iet-gtd.2014.0264