SINR Driven Joint Network Selection Policy in the Heterogeneous Internet of Things

In the heterogeneous Internet of things (IoT), the Signal to interference plus noise ratio (SINR) and delay constraint are two important factors that influence the throughput of IoT and the performance of users. Until recently, most network selection policy researches were based on either the Shanno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese Journal of Electronics 2017-07, Vol.26 (4), p.842-848
Hauptverfasser: Liu, Xinyi, Jiang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the heterogeneous Internet of things (IoT), the Signal to interference plus noise ratio (SINR) and delay constraint are two important factors that influence the throughput of IoT and the performance of users. Until recently, most network selection policy researches were based on either the Shannon theory or the signal strength, while the combined influence of the delay constraint and the SINR, which has a significant impact on resource utilization, is hardly considered. We therefore propose an SINR driven joint network selection policy, which incorporates the delay constraint and the signal strength into the SINR. This policy permits IoT users to access the network with the maximum of SINR from all the available networks under the delay and signal strength constraints. Theoretical analysis and the simulation results show that the joint network selection policy can obtain the higher throughput of IoT and average SINR comparing with other polices.
ISSN:1022-4653
2075-5597
DOI:10.1049/cje.2017.05.004