Complex SAR Image Compression Using Entropy-Constrained Dictionary Learning and Universal Trellis Coded Quantization

In this paper,an Entropy-constrained dictionary learning algorithm(ECDLA) is introduced for efficient compression of Synthetic aperture radar(SAR) complex images.ECDLA RI encodes the Real and imaginary parts of the images using ECDLA and sparse representation,and ECDLA AP encodes the Amplitude and p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese Journal of Electronics 2016-07, Vol.25 (4), p.686-691
Hauptverfasser: Zhan, Xin, Zhang, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper,an Entropy-constrained dictionary learning algorithm(ECDLA) is introduced for efficient compression of Synthetic aperture radar(SAR) complex images.ECDLA RI encodes the Real and imaginary parts of the images using ECDLA and sparse representation,and ECDLA AP encodes the Amplitude and phase parts respectively.When compared with the compression method based on the traditional Dictionary learning algorithm(DLA),ECDLA RI improves the Signal-to-noise ratio(SNR) up to 0.66 dB and reduces the Mean phase error(MPE) up to 0.0735 than DLA RI.With the same MPE,ECDLA AP outperforms DLA AP by up to 0.87 dB in SNR.Furthermore,the proposed method is also suitable for real-time applications.
ISSN:1022-4653
2075-5597
DOI:10.1049/cje.2016.07.015